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Abstract. A variational derivation of the effective-single-band Hubbard Hamiltonian for the
double-band Emery model is presented. The accuracy of the single-band mapping is analysed
for the finite four-site cluster and for the infinite plane. The BCS solutions of the effective
problem indicate the possibility of d-channel superconductivity of correlational nature.

1. Introduction

The search for an adequate description of strongly correlated systems, in particular of the
cuprate HTSC, is still in progress. In recent work [1–4] a method has been proposed for
constructing an effective-single-band Hamiltonian from a multiband model of the CuO2

plane of HTSC. It is based on perturbation theory for intercluster interactions. A suitable
cluster basis contains the d orbital of Cu, and Wannier combinations of the oxygen p orbitals
of x2 − y2 symmetry. Only the lowest states of clusters, with the numbersi = 0, 1, 2 of
holes in the cluster, have been separated out and put into correspondence with the site states
of a single-band (SB) model. The projecting of the original Hamiltonian onto the above
subspace leads to the effective Hubbard Hamiltonian, which takes into account all features
of the three-band Emery model even for large intercluster fluctuations. Unlike those in the
early work [5–10], the new SB mapping applies at arbitrary values of the parametert/δε,
whereδε = εp − εd is the energy difference of the p and d orbitals andt is the hopping
between them.

A similar SB Hamiltonian (SBH) has been derived [11] via the variational method of
local unitary transformations of the original Hamiltonian with subsequent projection onto
the SB subspace. In line with the results in [11], the optimal transformation appears to be
close to that which diagonalizes the intracluster part of the Hamiltonian.

A study of the accuracy of the SB mapping is very important, since the treatment of
the SB model is much simpler than that of thorough multiband models [12, 13]. Therefore
a direct estimation of the accuracy may be instructive. Both limits are of interest: the case
of hole localization at small doping and the case of large intercluster interactions at large
doping.

In the present work the accuracy of the variational SB mapping is studied via comparison
of energies obtained by the Hartree–Fock (HF) treatment of the SBH and the double-band
Hamiltonian (DBH), obtained with the use of local unitary transformation of the original
Hamiltonian. For the finite four-centre system, comparison with the result from exact
diagonalization is carried out. Simultaneously the method of unitary transformation is
formulated in a more general form than in [12]. Like the nonunitaryansatzof Gutzwiller’s
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type [14–17], the method provides a direct representation of correlated states. But unlike the
methods of [1–4], it also allows one to form a basis for the optimal effective Hamiltonian
in a variational way. In such effective problems a study of the BCS solutions gives an
indication of the possibility of superconducting pairing of d type due to correlated hopping
interactions of a correlational nature.

2. Derivation of the effective-SB and effective-DB Hamiltonians

Consider the simplified Emery model determined by two parameters only:δε/t andU/t .
Hereδε = εp − εd and t are the energy difference of the p and d orbitals and the hopping
between them, andU is the on-site Coulomb interaction at the Cu. As in [1–4, 11], we
use the basis of nonoverlapping cluster orbitals{dn, an}, wherean corresponds the Wannier
combination of p orbitals ofx2 −y2 symmetry. In this basis the Hamiltonian takes the form
[11]

H =
∑

n

hn +
∑
n6=m

Vnm (1)

hn = εdn
d
n + εpnp

n + 2tF (0)
∑
n,σ

(a†
nσ dnσ + HC) + Und

n↑nd
n↓ (2)

Vnm = 2tF (n − m)(a†
nσ dmσ + HC) (3)

where

F(n − m) = 1

N

∑
k

eik(n−m)Fk Fk = (s2
x + s2

y )
1/2 (4)

sx(y) = sin(kx(y)/2). (5)

The correlated wave functions of the DB approximation are presented as a result of local
unitary transformation of the original DB function8:

9DB(a, d) = W8(a, d) W =
∏
n

Wn. (6)

In particular, we will study the transformations of the original uncorrelated Hartree–Fock
(HF) states, like in the Gutzwilleransatz[14], where the nonunitary operatorW was used.
Here the local unitary operatorsWn refer to nonoverlapping two-orbital clusters{dn, an}
[11] and commute with each other. Their parameters are variational ones and are obtained
from minimization of the energy:

H̄DB = 〈9DBH9DB〉 = 〈8|W †HW |8〉. (7)

Representation (6) is similar to the Gutzwilleransatz[14]. But unlike in [14], the unitary
transformation allows one to obtain the effective Hamiltonian of the new DB problem:

H̃ (a, d) = W †HW. (8)

It acts in the space of functions8(a, d).
In the SB approximation the correlated state is presented as a transformed SB HF

function, for example8(a)†:

9SB(a, d) =
∏
n

Wn(a, d)8(a). (9)

† Various SB representations, for example9SB = W ′8(d) or 9SB = W ′′8(b) with bn = cosβan + sinβdn, are
equivalent, and relations betweenW ′ andW ′′ here orW in (9) are easily obtained.
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Then minimization of the energy:

H̄ SB = 〈9SBH9SB〉 = 〈8(a)|W †HW |8(a)〉 (10)

provides a new transformation which is optimal for SB HF functions. The corresponding
effective Hamiltonian of the SB problem is obtained by projection of the transformed one
onto the subspace of SB functions8(a):

H̃ SB(a) = PaW
†HWPa. (11)

HerePa projectsH̃ (a, d) onto the subspace of functions8(a), with zero occupancy of the
d orbitals. This may be done without loss of generality.

Note that the HF approach to the new effective-SB or effective-DB problems (8) and
(11) may be adequate if they again appear to be strongly correlated problems. But the HF
approach is adequate for estimation of the inaccuracy introduced by the SB mapping of the
problem. The difference between the SB and DB energies (7) and (10) can be regarded as
a measure of such inaccuracy.

Let us give details the operatorWn. In equations (6)–(11) the unitary operatorWn

transforms the components of thenth clusteran, dn in the total wave function8, and it
conserves the hole numberi and the spin of the cluster. That is,Wn acts on the states|iλ〉
of the nth cluster (the indexn is omitted below) withi holes on it:

|1λσ 〉 = {|a†
σ 〉, |d†

σ 〉}λ |3λσ 〉 = {|a†
αa

†
βd†

σ 〉, |d†
αd

†
βa†

σ 〉}λ (12)

|2λ〉 = {|a†
αa

†
β〉, |d†

αd
†
β〉, |(a†

αd
†
β + d†

αa
†
β)/

√
2〉, . . .}λ (13)

|0〉 |4〉 = |a†
αa

†
βd†

αd
†
β〉.

Here α, β are the up- and down-spin projections. Explicit expressions for only singlet
components of the double hole cluster states are given, since we suggest thatW transforms
only these components and retains the triplet ones unchanged.

Any unitary operatorWn with the above properties can be expressed via the Hubbard
operatorsX(n)

iλ,iλ′ acting in the cluster basis (12), (13):

Wn =
∏

i

[
I +

∑
λ,ν

(Siλ,iν − δλ,ν)Xiλ,iν

]
. (14)

It is determined by a set of unitary matricesS(i) = Siλ,iν . They characterize the rotation
among corresponding components of the basis (12), (13) withi holes on the cluster.

According to the definition, the Hubbard operators have only one nonzero matrix element
〈iλ|Xiλ,i ′λ′ |i ′λ′〉 = 1, and unitarity ofWn follows directly from their properties.

Thus, a general transformation which conserves the hole number and a spin on the
cluster is determined by sets of real unitary matricesSi = Siλ,iµ, i = 1, 2, 3. Here S(1)(α1)

and S(3)(α3) are the second-order matrices depending on parametersα1, α3 respectively,
andS(2) = S2λ,2λ′ is the third-order matrix depending on three parameters(φ, β, χ) if we
suppose thatWn acts only among the singlet two-hole components (13) of the cluster basis.

Consider now the action ofWn on the arbitrary operatorQn referring to thenth cluster.
Each operator of such kind can be expanded over the Hubbard operators:

Qn =
∑

qiλ,i ′λ′X
(n)
iλ,i ′λ′ (15)

Therefore, the transformed operatorQ̃n has a similar form:

Q̃n = W †
nQnWn =

∑
q̃iλ,i ′λ′X

(n)
iλ,i ′λ′ (16)
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and the coefficients̃q are connected to the original expansion coefficientsq in equation (15)
by a linear transformation:

q̃iλ,i ′λ′ =
∑

Siλ,iµSi ′λ′,i ′µ′qiµ,i ′µ′ . (17)

As a result, the transformed Hamiltonian of the DB model takes the form

H̃DB =
∑

n

h̃n + 2t
∑
n6=m

F(n − m)(ã†
nσ d̃mσ + HC). (18)

Here the intracluster part̃hn depends on the even Hubbard operatorsXiλ,iλ′ . Their
expressions in terms of the Fermi operators are given in the appendix. The final form
of the transformed operator̃anσ is

ãnσ =
∑
i,j

ga
i,j ri(σ )Rj (−σ) (19)

and d̃nσ has a similar form with the corresponding coefficientsgd
i,j . Hereri(σ ) andRj(s)

are

ri(σ ) = {anσ , dnσ , anσ nd
nσ , dnσ na

nσ }i (20)

Rj(s) = {1, na
ns, n

d
ns, a

+
nsdns, d

+
nsans, n

a
nsn

d
ns}j . (21)

The coefficientsga(d)
i,j are determined byS(i) with the use of a relation of the type of (17).

After substitution of h̃n and equations (19)–(21) in equation (18), we obtain an
explicit expression for the transformed DB HamiltoniañH in terms of the original Fermi
operators, involving the dependence of all of the coefficients on the variational parameters
(α1, α3, φ, β, χ). Then the average value of the energy

H̄ = 〈H 〉 = 〈9H9〉 = 〈8H̃8〉 = 〈H̃ 〉HF (22)

is exactly expressed via the single-particle averages

ρaa
k = 〈a†

kak〉 ρdd
k ρad

k = 〈a†
kdk〉.

Thus the self-consistent HF solutions of the effective-DB problem have been found for
some transformation parameterspν = (α1, α3, φ, β, χ) and the energy was subsequently
minimized with respect topν . The procedure for obtaining such a solution followed by
minimization over parameters has been elaborated.

Now we derive the SB Hamiltonian (11) acting in the space of the SB functions (9)
with zero occupancy of the d orbitals. It has a rather simple form:

H̃ (a) =
∑

n

(Eaa
†
nσ anσ + V0n

a
n↑na

n↓) + T̃ (a) (23)

T̃ (a) = 2
∑
i,j

∑
n6=m,σ

F (n − m)ti,j (a
†
inσ ajmσ + HC) (24)

a1nσ = anσ (1 − na
n,−σ ) a2nσ = anσna

n,−σ . (25)

Here i, j = 1, 2 andEa, V0, tij depend on the parameterspν of the unitary transformation.
Notice that a zero occupancy of d orbitals in8(a) does not mean the same for the total SB
function 9(a, d) = W(a, d)8(a). It means only that the lowest cluster components are
preferentially occupied and the excited cluster configurations are absent. For the SB model
with optimal transformation parameters the cluster states

Wn|0〉 Wn|a†
nσ 0〉 Wn|a†

nαa
†
nβ0〉 (26)
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Figure 1. The energy of the four-site complexadad as a function ofU = Ud at n = 2. Curves
1 are the results of the exact diagonalization of the Hamiltonian; they coincide with the results
obtained with the optimal double-configurational SB function (28). Curves 2 are the results
for the optimally transformed HF function (27), and curves 3 are the same for the pure HF
approximation. Dashed curves combined with parts of curves 3 for smallU are the energies for
Gutzwiller’s function. The bunches A, B, C refer toδε/t = 0, 1, 2 respectively.

are close to the lowest eigenstates of the intracluster Hamiltonianhn, and the optimal
operatorWn is close to that which diagonalizeshn. This confirms that the intercluster
interactions in the Emery model are small.

A self-consistent HF solution of (23) with minimization over the transformation
parameters has also been realized. Now only three parameters are significant, since two of
them governing the rotation of the three-hole components or the excited singlet two-hole
components do not affect the energy in the SB approach.

3. The four-site complex

First we present the energies for the finite complex of four centresa1d1a2d2 having two sorts
of orbital. Let these centres be placed at the vertices of a square and the system be described
by the Coulomb interactionU = Ud on two d centres and by thea–d hoppingt = tad . To
study the accuracy of the SB mapping of such a problem we divide the complex into two
clusters(ad)2, and the correlated state9(ad) = W8(a) is presented as transformed SB
states8(a) of two types—the HF function8I or the double-configuration function8II :

9I(ad) = W8I 8I =
∏
σ

a†
gσ |0〉 (27)

9II (ad) = W8II 8II = cosθ
∏
σ

a†
gσ |0〉 + sinθ

∏
σ

a†
uσ |0〉. (28)

Hereag(u) = (a1σ ± a2σ )/
√

2.
Figure 1 presents the energy of the system as a function ofU . Curves 1 are the results

for the double-configuration SB function (28). It almost coincides with the result of exact
diagonalization. The deviationδE is less than 0.0064t, 0.013t, 0.018t for δE = 0, t, 2t .
Curves 2 are the results for optimally transformed HF functions (27). Curves 3 are the
results of the HF treatment of the original untransformed problem atW = I . It is seen that
the deviations of curves 1 from the exact results 3 are connected with the HF treatment of
the transformed effective Hamiltonian but not with the use of the effective-SB Hamiltonian.



7334 A A Ovchinnikov and M Ya Ovchinnikova

The electronic densitiesρa, ρd, ρad coincide with similar accuracy. The corresponding
deviations areδρd/ρd < 0.01, δρad/ρad < 0.02 for results obtained with the use of function
(28) and by exact diagonalization. At the same time it is seen that the HF treatment of the
SB may be adequate.

It is instructive also to compare these results with the energies of the system atn = 2
obtained with the use of Gutzwiller’s function:

9Gut =
∏

i=1,2

[1 + (η − 1)nd
i↑nd

i↓]8HF .

The energy is minimized with respect toη in the interval (0,1). It appears that forU < Uc

the valueηmin = 1 and the energies coincide with the pure HF value. ForU > Uc one
obtainsηmin = 0 and the corresponding energies are shown by dashed curves in figure 1.
Thus, for this finite system atn = 2 the energies for Gutzwiller’s functions are always
higher than those for the unitary transformed HF functions.

Table 1. The expansion coefficients of the site states (26) of the SB model in the cluster basis
(12), (13) obtained using the cluster perturbation theory or by the variational method of unitary
transformations.

δε/t C1
1 C1

2 C2
1 C2

2 C2
3

Cluster 2 0.462−0.887 0.487 0.294−0.822
Variation 2 0.559 −0.829 0.477 0.322−0.818
Cluster 0 0.707−0.707 0.645 0.198−0.738
Variation 0 0.714 −0.700 0.621 0.230−0.749

4. Results for the simplified Emery model

Having in mind the above, we use the HF treatment of the SB and DB problem for
estimation of the inaccuracy which is introduced by using the SB approximation in the
Emery model (1) with the parametersU/t = 7, δε = 0, 2, 4. After minimization over the
variational parameters the energies in the SB and DB problems appear to be very close.
The deviation isδE 6 0.005t for the hole concentration in the range 16 n 6 1.8. If
the optimal variational operatorW is replaced by the transformation operatorWcl which
diagonalizes the intracluster Hamiltonian—i.e. minimizes the energy—in neglecting the
intercluster interaction, then the deviation of the energy is also very small:δE 6 0.005t
for the same model for 16 nh 6 1.8. A good accuracy for the energy near its minimum
does not mean that the same accuracy will be achieved for other physical quantities. For
example, the superconducting gap in the BCS solution changes by 40% on replacingW by
Wcl .

The optimal transformations of the original problem to the effective-SB and effective-
DB ones are also close to each other but do not coincide completely. Table 1 presents the
expansion coefficientsci

λ of the transformed cluster states (26):

W8i(an) =
∑

λ

ci
λ|iλ〉 ci

λ = Si1,iλ (29)

in the basis of the cluster functions (12), (13). These coefficients determine the real structure
of the site states of the SB model. The first and third lines in table 1 give the expansion
coefficients of the eigenfunctions of the intracluster parthn of the Hamiltonian. Table 1
shows the difference in structure of the site states of SB models obtained variationally
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and by use of the cluster perturbation theory. The variational approach effectively takes
into account the corrections to the basis of the SB model introduced by the intercluster
interactions.

The self-consistent DB HF solutions appear to be close to the SB solutions. That is, the
weight P ∗ = ρaρd − ρ2

ad of the excited cluster configurations in the DB function8HF (ad)

appears to be very small in comparison with the weight,≈1, of the lowest configurations (26)
incorporated in the SB function. The variational calculations of the effective-DB problem
yield P ∗ ≈ 10−4 at δε/t ' 1–4 andUd/t ' 7. Recall that in the effective-DB Hamiltonian
H̃ the cluster states with occupied d orbitals symbolize the excited cluster states, unlike to
the case for the lowest cluster states (26) of the SB model.

Thus, the effective-SB Hamiltonian derived with the use of optimal unitary trans-
formations or the cluster transformationWcl can be a basis for the study of AF and SC
pairing in systems.

5. Admissible types of SC pairing

The relationV0/ti,j > 3–6 for the main parameters of the effective-SB HamiltonianH̃

for the hole densityn > 1 andδε/t = 1–4 indicates that the Hamiltonian still leads to a
strongly correlated Hubbard problem, and the HF approximation is obviously inappropriate
here. Nevertheless, some indications as to the possibility of any type of pairing can be
obtained in the band approach to the SB problem. Since such results have a qualitative
rather than quantitative character, we restrict the analysis to the simplified model (1), which
misses many important interactions of the real CuO2 plane. We suppose that the main role
of these interactions reduces to renormalization of the main effective parameterδε/t of
model (1).

In the band approach to the SB problem (23), the AF pairing is determined by the
parameterV0/t which is 0.75 (0.73) or 1.735 (1.75) for the variational (the cluster) trans-
formation parameters forδε/t = 0 or 2. The values of the AF gap are then 0.45t or
1.55t , and the AF order with the double magnetic unit cell disappears forn = 1.15 or 1.4,
respectively.

Now we estimate the possible types of SC pairing in the effective-SB problem based
on the simple BCS-like function8BCS(a) without taking into account the AF correlations.
The average energy of the SB Hamiltonian (23) over8BCS(a) is

〈H 〉/N = (2Eaρ0 + V0ρ
2
0 + 2tθ0) + 〈HSC〉

HSC = k00u
†
0u0 +

∑
l 6=0

k0l(u
†
0ul + HC) +

∑
l 6=0

κlu
†
l ul .

(30)

Here the summing is carried out over the vectorsl = (lx, ly), andρl, ul are the normal and
anomalous averages:

ρ0 = N−1
∑

k

eiklρk 〈ul〉 = N−1
∑

k

eikl〈a†
kαa

†
−kβ〉

θ0 = N−1
∑

k

[Fk − F(0)]ρk κl = −8τF (l)ρl τ = t11 + t22 − 2t12.

The main constantk00 = V0 − 8τθ0 ' V0 corresponding to the anomalous average of s type
is large and positive. This forbids SC pairing of s type. At the same time the last term
in equation (30) might provide SC pairing of d symmetry. Since theκl decrease sharply
with l, it is sufficient to consider only the main first contribution froml = 1 in the pairing
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interaction of d symmetry:

V (SC–d) = κ1β
†
1β1

β
†
1 = N−1

∑
k

(coskx − cosky)a
†
kαa

†
−kβ κ1 = −8τF (1)ρ1.

The constantκ1 of the SC pairing of d type depends on the valueτ = t11 + t22 − 2t12

determined by the parameters of the kinetic energy (24) of the SB model. AtU/t = 7 the
constantκ1 is negative (τ, ρ1 < 0, F (1) > 0) over the whole range of doping 1< n < 1.8.

However, the value of the constant is very small:κ1 = −{0.1–0.02}, and simple BCS
solutions of the SB problem (29) give too small a value of the gap:1 ' (1–7) × 10−5t for
U/t = 7, δε/t = 2–4. One cause of such a small gap may be the neglect of intercluster
correlations. A large band width and a small density of states at the Fermi level are typical
for the single-particle HF or BCS solutions of the SB problem. In real situations the SB
problem (23) corresponds to the large interactionV0/tij > 1, leading to the hole localization
in lower hybrid orbitals of clusters. This can significantly enlarge the density of states in
the upper Hubbard band—and the SC gap correspondingly.

Thus the BCS solutions demonstrate that an electronic mechanism of correlational nature
may be responsible for the SC pairing of d symmetry with a value of the gap much less
than the scale of the electronic parametert of the original model. Previously Hirsch and
Marsiglio [18] had discussed the mechanism of superconductivity due to the correlated
hopping interaction (CHI) in the oxygen p-orbital system. The CHI had been postulated
in [18, 19], and a small p–p hopping (about 0.06 eV) was needed to describe the proper
scale of the gap for SC pairing of s type. Unlike in [18], the terma

†
nσ amσnn,−σ nm,−σ in

the effective-SB Hamiltonian (23) derived from the original model with p– d hopping may
induce superconductivity of d type with a value of the gap much less than the electronic
energy scalet in the system. However, the above-discussed simplified model does not
include the important Coulomb interactions (Up, Vpd , etc) which also contribute to the
constant of SC– d pairing. So further studies taking into account these interactions and the
AF correlations are needed.

6. Conclusions

The variational effective-SB Hamiltonian of the Emery-like problem obtained by local
unitary transformation of the original Hamiltonian gives energies as accurate as those from
the effective-DB model. The effective-SB model obtained by a variational method appears
to be very close to the SB model derived in the cluster perturbation method [1–4]. The
calculations of the four-site complex confirm a high accuracy of the SB model, but show
that HF treatment of the SB problem may be inadequate. The BCS solutions of the SB
model give an indication of the possibility of superconducting pairing of d symmetry of
correlational nature.

Acknowledgments

This research was made possible in part by Grant 93-03-18639 from the Fund for
Fundamental Research of the Russian Academy of Sciences, Grant 015-943 of the ISTC at
Moscow, and Grant MIO300 from the International Science Foundation of G Soros. The
authors also greatly appreciate valuable discussions with V Ya Krivnov.



The Emery model and superconductivity 7337

Appendix

The intracluster parthn of the transformed Hamiltonian (18) is expressed in terms of the
even Hubbard operatorsX(n)

iλ,iλ′ which are diagonal over the hole numberi = 1, 2, 3. In
terms of the Fermi operator they are (the numbern of the cluster is omitted below)

X1λσ,1λ′σ =
(

P d
0 P a

σ a
†
1σ d1σ

d
†
1σ a1σ P a

0 P d
σ

)
λλ′

X3λσ,3λ′σ =
(

P d
2 P a

σ −a
†
2,−σ d2,−σ

−d
†
2,−σ a2,−σ P d

2 P a
σ

)
λλ′

X2λ,2λ′ =


P a

2 P d
0 a

†
↑a

†
↓d↓d↑

1√
2

∑
σ

a
†
2σ d1,−σ

P a
0 P d

2

1√
2

∑
σ

d
†
2σ a1,−σ

1

2

∑
σ

(P a
σ P d

−σ − a†
σ a−σ d

†
−σ dσ )


λλ′

.

The missing elements in the last matrix are the Hermitian conjugate onesX2µ,2ν =
(X2ν,2µ)†, and the following notation is used:

P a
0 = (1 − na

↑)(1 − na
↓) P a

2 = na
↑na

↓ P a
σ = na

σ (1 − na
−σ )

a1σ = aσ (1 − na
−σ ) a2σ = aσna

−σ .

P d
0 , P d

2 , d1σ andd2σ are similarly defined.
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